Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase.

نویسندگان

  • Yanping Xu
  • Fulong Li
  • Lei Lv
  • Tingting Li
  • Xin Zhou
  • Chu-Xia Deng
  • Kun-Liang Guan
  • Qun-Ying Lei
  • Yue Xiong
چکیده

Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vivo remains poorly understood. Here we report that PGAM is acetylated at lysine 100 (K100), an active site residue that is invariably conserved from bacteria, to yeast, plant, and mammals. K100 acetylation is detected in fly, mouse, and human cells and in multiple tissues and decreases PGAM2 activity. The cytosolic protein deacetylase sirtuin 2 (SIRT2) deacetylates and activates PGAM2. Increased levels of reactive oxygen species stimulate PGAM2 deacetylation and activity by promoting its interaction with SIRT2. Substitution of endogenous PGAM2 with an acetylation mimetic mutant K100Q reduces cellular NADPH production and inhibits cell proliferation and tumor growth. These results reveal a mechanism of PGAM2 regulation and NADPH homeostasis in response to oxidative stress that impacts cell proliferation and tumor growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase

Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vi...

متن کامل

Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization.

Reactive oxygen species (ROS) play a crucial role not only in the physiological signal transduction but also in the pathogenesis of several human diseases such as atherosclerosis, neuro-degenerative diseases, metabolic disorders, aging or cancer amongst others. Oxidative stress is also responsible for cellular and organism senescence, in accordance with what Harman initially proposed in the fre...

متن کامل

PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.

Keap1 is a BTB-Kelch substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex that functions as a sensor for thiol-reactive chemopreventive compounds and oxidative stress. Inhibition of Keap1-dependent ubiquitination of the bZIP transcription factor Nrf2 enables Nrf2 to activate a cyto-protective transcriptional program that counters the damaging effects of oxidative stress. In t...

متن کامل

Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress.

Epicardial adipose tissue (EAT) is an endocrine organ adjacent to coronary arteries and myocardium without anatomy barriers. Locally produced adipokines may reflect or affect to cardiovascular physiology and pathology. Our aim was to study the protein expression profiles of EAT and subcutaneous adipose tissue (SAT) to identify local candidate molecules characterizing EAT in patients with cardio...

متن کامل

HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation

Heat shock proteins belong to a conserved protein family and are involved in multiple cellular processes. Heat shock protein 27 (Hsp27), also known as heat HSPB1, participates in cellular responses to not only heat shock, but also oxidative or chemical stresses. However, the contribution of HSPB1 to anti-oxidative response remains unclear. Here, we show that HSPB1 activates G6PD in response to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 74 13  شماره 

صفحات  -

تاریخ انتشار 2014